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Flow past an impulsively started circular cylinder 
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Department of Applied Mathematics, University of Western Ontario 

(Received 10 January 1973) 

An accurate method is described for integrating the Navier-Stokes equations 
numerically for the time-dependent flow past an impulsively started circular 
cylinder. Results of integrations over the range of Reynolds numbers, based on 
the diameter of the cylinder, from 5 to 03 are presented and compared with 
previous numerical, theoretical and experimental results. In  particular, the 
growth of the length of theseparated wake behind the cylinder has been calculated 
for R = 40,100 and 200 and is found to be in very good agreement with the results 
of recent experimental measurements. The calculated pressure distribution over 
the surface of the cylinder for R = 500 is also found to be in reasonable agreement 
with experimental measurements for the case R = 560. 

For Reynolds numbers up to 100 the equations were integrated until most of 
the features of the flow showed a close approximation to steady-state conditions. 
The results obtained are in good agreement with previous calculations of the 
steady flow past a circular cylinder. For R > 100 the integrations were continued 
until the implicit method of integration broke down by reason of its failure to 
converge. A secondary vortex appeared on the surface of the cylinder in the case 
R = 500, but for higher Reynolds numbers, including the case R = co, the pro- 
cedure broke down before the appearance of a secondary vortex. In  all cases the 
flow was assumed to remain symmetrical. 

1. Introduction 
Previous theoretical work on the problem of flow past a circular cylinder, which 

is started impulsively from rest and subsequently moves with constant velocity 
in a viscous fluid, falls into two main categories. First, the flow for small times 
after the start may be considered using boundary-layer theory. Blasius (1908), 
Goldstein & Rosenhead (1936), Schuh (1953), Wundt (1955) and Watson (1955) 
have all considered this problem in the limiting case of infinite Reynolds number. 
Wang (1967) and Collins & Dennis (1973) have extended the work to finite but 
high values of the Reynolds number R. The basis of these applications of un- 
steady boundary-layer theory is to expand the flow variables in powers of the 
time from the start of the motion and they are necessarily limited to small times 
after the start. The results do, however, indicate the basio structure of the initial 
motion. 

The second category is that of purely numerical solutions of the Navier- 
Stokes equations, and these are on the whole valid for any value of the Reynolds 
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number. Payne (1958) gave the first numerical solutions for R = 40 and 100. 
Here R = 2Ua/v, where a is the radius of the cylinder, U is the constant velocity 
and v is the coefficient of kinematic viscosity. The Navier-Stokes equations were 
integrated to moderate values of the time, although the solution at R = 100 
was still far from the steady state when the integration was terminated. Payne’s 
solutions were reinvestigated by Ingham (1968), who showed that very small 
time steps must be taken in the integration procedure at  the start of the motion 
to obtain an accurate solution. This is a consequence of the singular nature of 
the impulsive start. The problem has also been considered by Hirota & Miyakoda 
(1965), Kawaguti & Jain (1966), Son & Hanratty (1969), Jain & Rao (1969), 
Thoman & Szewczyk (1969) and Dennis & Staniforth (1971). Kawaguti & Jain 
considered the Reynolds number range R = 10 to 100, while Son & Hanratty 
gave solutions for R = 40, 200 and 500. Thoman & Szewczyk considered the 
very wide range of R = 1 to lo6. Dennis & Staniforth considered the range 
R = 100 to co, but, on the whole, for relatively small times. 

One of the major points of interest in the problem is the development of the 
unsteady separated wake behind the cylinder as a function of time and its 
structure for large values of the time. In  the experiments described by Honji & 
Taneda (1969) and Taneda (1972), a number of properties of the development of 
the wake were studied and, in particular, the length of the pair of standing eddies 
formed behind the cylinder has been measured as a function of time for various 
values of R. While a comparison of their results for R = 40, 100 and 200 with 
those of existing calculations shows reasonable agreement at small times, some 
anomalies exist for larger times. For example, there is a substantial difference 
between the measured wake length of Honji & Taneda (1969) and the calcula- 
tions of Kawaguti & Jain (1966) at R = 100 as the time increases. A similar dis- 
crepancy exists, although on a much smaller scale, between the measurements of 
Honji & Taneda (1969) and the calculationsof Son & Hanratty (1969) at R = 200. 
Honji & Taneda (1969) also found that a pair of secondary vortices is formed on 
the surface of the cylinder at  R = 550 and above, but not for lower values of R. 
Secondary vortices were observed by Son & Hanratty (1969) in their calculations 
at  R = 500, but they first appear a t  an earlier time than that estimated by 
Honji & Taneda (1969) at R = 550. Some further investigation of the cases 
R = 100,200 and 500 would appear to be worthwhile. 

One other feature of the time-dependent calculations of both Kawaguti & 
Jain (1966) and Son & Hanratty (1969) is that, at R = 40 (where the calculations 
can be advanced to an approximate steady state), both solutions agree in 
obtaining a steady-state wake length considerably greater than that of previously 
published numerical solutions of the steady-state equations. This case is re- 
investigated here by the time-dependent method. It is found that the tendency 
for large times is more consistent with the steady -state solutions given by Takami 
& Keller (1969) and Dennis & Chang (1970) than with the tendency of the un- 
steady solutions cited above, although a comparison of the time-dependent 
calculations with results of Taneda (1972) tends to be less conclusive in this case. 
The case R = 100 has also been investigated to moderate values of the time in 
the present paper, in an attempt to obtain some confirmation of the steady- 



Flow past an impulsively started circular cylinder 107 

state solution given by Dennis & Chang (1970). The agreement is found to be 
satisfactory. 

Finally, one of the objects of the present paper is t o  give a numerical treatment 
of this problem which is satisfactory both initially, when boundary-layer theory 
applies, and also at  later times, when separation has started and the boundary 
layer thickens. The methods used, for example, by Fame (1958), Kawaguti & 
Jain (1966) and Son & Hanratty (1969) do not take into account the initial 
boundary-layer structure of the flow. These methods are therefore inaccurate 
initially, and the effect of this inaccuracy on the solution at  later times is un- 
known. The present method of solution employs boundary-layer variables 
initially. It is to some extent in the spirit of the Galerkin or spectral methods 
recently discussed by Orszag (1970, 1971). It adopts basically the same type of 
structure for the solution as that used by Collins & Dennis (1973), except that 
here the time-dependent integrations are carried out by fully numerical methods 
rather than by expanding the solutions in series of powers of the time. Thus the 
initial solution given here may be used to check the solution in powers of the 
time given by Collins & Dennis (1973). This check is extremely satisfactory. At 
later times the boundary-layer variables are abandoned, and the solution is 
continued in the natural space co-ordinates of the problem. The method of 
integration is an implicit one of Crank-Nicolson type. It is found that, at the 
higher Reynolds numbers, a time is always reached when this method fails to 
converge and the integration must be terminated. This breakdown occurs a t  
earlier times as the Reynolds number increases. 

2. Basic equations and method of analysis 
The same basic formulation of the problem described by Collins & Dennis 

(1973) is adopted. Modified polar co-ordinates ([,19) are used, where 5 = log (./a), 
a is the radius of the cjlinder, and the origin is taken at  the centre of the cylinder. 
The cylinder is suddenly started with velocity U in the direction 0 = n- and we 
work in terms of the dimensionless radial and transverse components of velocity 
(u, v )  obtained by dividing the corresponding dimensional components by U .  
The components (u, w) may be expressed in terms of the dimensionless stream 
function $([, 8, t )  by the equations 

u = exp { - ( a w e ) ,  ZI = - exp { - tJ @$/at), (1) 

where $ satisfies the equation 

Here g is a dimensionless scalar vorticity function defmed by the equation 
5 = - a<'/U, where 6' is the dimensional vorticity. The function 5 satisfies the 
equation 

ag 2 a2g  a z g  

a? ae ag a t  ae R 0 ag2 ae2 
exp{2[}-++----- = - -+- (3) 
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where r = Ut/a and t is the actual time. The Reynolds number R is defined by 
R = 2Ualv. If the motion starts at t = 0, then for all t > 0, 

$ = a$/a( = 0 when ( = 0, (4) 

exp{ -g)(a$/ae) -+ COS8, exp{ -g)(a$pt) -+ sin8 ( -+ 00. (5) 

In  addition, the flow will be assumed to remain symmetrical about the direction 
of motion of the cylinder. Hence both the functions $ and 6 are anti-symmetrical 
about 8 = 0 and 6 = 7~ and, in particular, 

$ = { = O  when 8 = 0 ,  8 = n .  (6) 

The method of solution adopted by Collins & Dennis (1973) was to express the 
functions @ and 6 in the form of the series 

and 

m 

although, in practice, a preliminary transformation of the variable ( to one more 
suitable to the initial boundary layer formed on the cylinder was made. The 

and thereafter the coefficients of the periodic terms in (7) and (8), when expressed 
as functions of x and r, were expanded in series of powers of both r and k with 
coefficients which are functions of x, The disadvantage of this approach is that 
the expansion is limited to relatively small values of r and k, since only a small 
number of terms can be calculated, and even then the range of convergence of 
the series in r is not known. In  the present paper the expansion in powers of 7 

and k is replaced by a time-dependent method of numerical integration. The 
integrations are carried out initially using the variable x which is appropriate to 
the initial boundary layer. The equations are integrated to values of r well 
beyond the range of validity of the series expansions in rand k. Then, at  a suitable 
time after the boundary layer has started to thicken, the variable z is replaced 
in terms of the original variable 5 and the integration is continued using the 
equations written in terms of 5. 

The equations necessary for the integrations are found by substituting (7 )  
and (8) into (2) and (3), multiplying each equation by sin no, and integrating with 
regard to 8 from 8 = 0 to 6 = n. Equation (2) becomes 

transformation used was ( = kx, k = 2(2r/R)), (9) 

(10) 
W n  - - n2fn = exp {2E} g,. 
at2 

Equation (3) can be written as 

where 

m i n  
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Here j = Im - nl and sgn (m - n) denotes the sign of m - n, with sgn (0)  = 0. I n  
both (10) and (1 1), n can take any positive integer value and the solutions of these 
two sets of equations define, in theory, two infinite sets of functions fn(6,7) 

and g,(E,7). In  practice the series (7) and (8) must be truncated by putting 
identically to zero all terms with subscript n > no, say, and this defines a trunca- 
tion of order no. All functions with subscripts n > no are likewise put zero in 
(10) and (1 l ) ,  and the 2n0 equations (10) and (1 1) are solved to give an approxi- 
mation to the flow. 

Boundary conditions follow from (4) and (5). From (4) it follows that 

f, = afn/aE = 0 when g = 0, (12) 

for all n. As a consequence of the uniform stream condition (5) we must also have 

(13) 
that, for all n, 

Finally, the condition (5) implies that 

exp { - E} jn  + sn, ~ X P  { - E} (ajnlaE) -+ an as E + (14) 

g,(&7) +- 0 its g-+co. 

where & = 1 ,  8,=0 ( n = 2 , 3 , 4  ,... ). 
If we multiply (10) by exp { - nt} and integrate from 6 = 0 to E = co, we may 
deduce, using (12) and (14), that 

s,” exp ((2 -n) 51 qn(E37) = 28,. (15) 

Collins & Dennis (1973) showed that the conditions (12), (13) and (15) are suf- 
ficient to solve the problem, and that, if they are satisfied and g,(&7) is such 
that exp {26}gn(E, 7) is bounded for all n as E; + co, then the flow is automatically 
adjusted to satisfy the external stream condition (5). The same three conditions 
are used in the fully numerical solution of the problem. 

Equations (10) and (11) determine the development of the flow at some time 
after the impulsive start, but in the initial stages of the motion the boundary- 
layer co-ordinate x introduced by the transformation (9) is more appropriate. 
The functions F, and G, defined by the relations 

fn = kFn, gn = Gn/k (16) 

are introduced. Equation (10) then becomes 

PFn 
ax2 
-- n2k2Fn = exp {2kx} G,, 

and equation (1 1) may be written as 

47 !% = exp { - 2kx}- a2Gn + (2x + 4n7F2, exp { - 2kx}) - aGn 
a7 ax2 ax 

- n2k2)] G, + 4 ~ e x p  { - Zkx>S;, (18) 

where SX is 8, with f, replaced by F,, g, replaced by G, and replaced by x. 
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The boundary conditions simply become 
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F, = aF,/ax = 0 when x = 0, (19) 

G,(x,T) -+ 0 as x+ 00 (20) 

The solution at  the start of the motion is found by putting T = 0 (and hence 
also k = 0) in (17) and (18), and in the condition (21). Equations (18) become 

a2G, aG, 
-+2x-+2Gn = 0 
ax2 ax 

and the only solutions which satisfy (20) and (21) are 

The corresponding solutions of (17) (with k = 0) satisfying (19) are 

Fl = 2 xerfx--(1-exp~-x2})], 1 ( n* 
Fn = 0 (n = 2,3,  ...). (23) 

The initial solution given by (22) and (23) forms the starting point of the solution 
in powers of 7 given by Collins & Dennis (1973), and in the present paper it like- 
wise forms the starting point of the numerical solution of (17) and (18). In the 
initial stages only a very few terms of the series (7) and (8) are required to describe 
the flow, but more terms become necessary as the time-dependent integrations 
proceed. This is exactly analogous to the case of expansion in powers of 7, where 
each new power of r introduces higher periodic terms in the expansions (7) and 
(8). However, the advantage of the present method is that the numerical integra- 
tions can be carried on long after the series in powers of T ceases to be valid, and 
further the method is not necessarily restricted to high values of R. After the 
boundary layer thickens it is more realistic to continue the integration in the 
physical variabIe g, and (10) and (I I )  are used rather than (17) and (18). 

3. Numerical methods 
The principle of solving either pair of sets of equations (10) and (11) or (17) 

and (18) is similar, and is described in detail only for the pair (10) and (11). 
For a given truncation of order n, we must solve 2n, equations, n, of type (10) 
(n = 1,2,  ..., no) and no of type (11) .  We can write (11) as 

where a,, b,, c, and d, are easily identifiable functions o f f  and 7. The method of 
solution used is the Crank-Nicolson implicit method, which can be written as 

g n ( f , T ) - W Q n ( f , 7 )  = gn(f,r--H) +&-qn(t,7--W, (25) 



Flow past an impulsively started circular cylinder 111 

where H is the integration step in the T direction. Central differences are used to 
approximate the space derivatives in (24 ) ,  which gives the approximation 

h2qn(E, 7) = {an(E, 7) + $hbn(t, 7)) gn(E + h, 7) + {a,(57 7) - &hb,(t, 7)) 

x gn(E - h, + {h2c,(5, 7) - 2a,(E, 7)) g,(t,7) + h2d,(t, 7). 

Substitution of this result in (25 )  gives 

(1 + ' ~ a , ( [ ,  7) - +Hcn(t, 7)) g,(tt 7) - y{a,(t, 7) + +hbn(t, .I> g,(t + h, 7) 

-y{a,(5,7)-$hbn(t77)}g,(t-h,7) = +Hd,( [ ,7)+L, (C,7-H) ,  (26 )  

where y = H/2h2, h is the grid size in the 6 direction, and L,([, T - H )  is the right 
side of (25 )  with q,(& 7 - H )  calculated by putting 7 = 7 - H in the expression 

In  the step-by-step procedure of integration, the quantity L,([, 7 - H )  is 
known from the previous time step. Also, d , (&~)  on the right side of (26 )  is 
independent of the particular function g,([, 7) which occurs on the left side. An 
iterative procedure of solving the set of equations (26 )  for n = 1 to no, each equa- 
tion being an approximate analogue of the corresponding equation ( l l), may be 
outlined as follows. The equations are solved in turn from n = 1 to no. The 
quantities a, are independent of n and are known explicitly. The quantities b,, 
c, and d, are calculated from the most recently available information, using 
central differences to calculate the derivatives with regard to t which appear 
in the expressions for these quantities. Thus each time an equation of the set (26 )  
is to be solved, the right side may be considered known, and a tri-diagonal ma.trix 
of the form 

for qn( f ,7 ) -  

An([, 7) gn(t- h, 7) + Bm(5, 7) gn(5, 7) + Qn(t, 7) gn(t  + h, 7) = Da(t, 71, (27 )  

must be solved. The solution is required subject to the condition8 (13) and (15). 
It is obtained in the following manner. A solution gE([, 7) of the homogeneous set 
of difference equations obtained by putting On([, 7) = 0 in (27 )  is found to satisfy 
the conditions gg(0, 7) = 1, gz(Z, 7) = 0, where 1 is some large enough value of 5. 
A solution g,($, 7) of the full equations (27 )  is then found to satisfy @,(O, 7) = 1, 
$,(Z, 7) = 0. The solution 

(28 )  

now satisfies the difference equations (27 )  and also the condition (13) (in the sense 
that = 1 is taken to  approximate E + 00) for all values of the constant K,. 
The solution (28 )  is now substituted into the condition (15) and the appropriate 
integrals are evaluated using numerical integration. The upper limit in each of 
the integrals is replaced by E = I, as an approximation. By this procedure the 
constant K ,  can be chosen so that (15) is satisfied; thus (28 )  then satisfies all the 
required conditions, or a t  least approximations to them. The inversion of the 
tri-diagonal matrices necessary to give g:(t, 7) and g,(l, 7) was carried out using 
the method described by Rosser (1967). 

After an approximation to the solution of each of the set of equations (1  1) is 
obtained by this process, the resulting approximation (28 )  is used to determine 
the right side of (10). This equation is then solved by a step-by-step method of 

g d E ,  7) = K , g X  7) + i7,(E? 7) 
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integration subject to the conditions (12). This is a standard problem in theory 
but a difficult one in practice, because the usual finite-difference methods give 
extremely unstable formulae of integration when n is large (and here no = 80 
in some of the cases to be described). A stable and accurate method of integration 
has been discussed in a report by Dennis & Chang (1969). The method is suitable 
in the present case provided that I is taken large enough to negleot the integrand 
in the integral in (15) for .$ > I ,  and so satisfy this condition adequately. Applica- 
tion of the method completes the solution for fn(c, r )  and gn(& r )  for the given 
value of n, and we then proceed to the next value of n, and so on until n = no. 

The above cycle from n = 1 to no is repeated until, ultimately, convergence is 
achieved. This is decided by the test 

for a.11 n = 1,2,3,  . . . ,m0 and for all grid values of E throughout the field, i.e. 
= 0,  h, 2h, . . ., 1. Here, the superscripts m, m + 1 refer to two successive iterates 

in the cyclic procedure. This iterative procedure converged satisfactorily for 
small values of r, but as r increased it was necessary to introduce the so-called 
smoothing technique. In this, if we denote the calculated right side of (28) by 
&($, r ) ,  and suppose that the previous iterate for gn((, r )  was q(nm)(c, r ) ,  then the 
next iterate is defined by the average 

gL+”(E, 7) = Kgn(E ,  7) + (1 - K )  gP,”’(E, 71, 

where K is chosen empirically such that 0 < K < I. The case K = 1 corresponds 
to taking the function defined by (28) to be the next iterate. If this process di- 
verges, a reduction of K will generally secure convergence. As r increased it was 
found to be necessary to reduce K to to give convergence and, ultimately, 
it was impossible to achieve convergence at all for the higher values of R, 
although there appeared to be no problem of convergence for lower values of R. 

The method of solution of (17) and (IS), which hold when boundary-layer 
variables are used, is very similar. A typical equation of the set (18) can be written 
as 

A slight modification in dealing with (30) is appropriate in view of the fact that 
it is used near r = 0. It is better not to divide each side by the factor 47 to bring 
it into the form (24) but rather to integrate (30) from r--H to r ,  integrating the 
left side by parts, then approximating the resulting integrals by the trapezoidal 
formula. This gives 

4(r-4H)Gn(x,r)-4Hq~(s,r) = 4(r-~H)Gn(x,7-H)++Hq~(x,r-H). (31) 

The reason for this procedure is that the expansion in powers of r of the function 
G,(x, r ) ,  which dominates the solution at the start of the motion, contains a term 
of the form k$(x ) .  Hence, for any finite value of R, the function aGl/ar has an 
algebraic singularity of the form r-4 at r = 0. Thus, dividing each side of (30) 
by 47 and applying the Crank-Nicolson method is unsatisfactory near r = 0, 
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and indeed involves an improper integral for the first time step, whereas integra- 
tion of (30) in the manner indicated smoothes out the effect of the singularity 
in aG,/ai- at T = 0. Equation (31), which results from the integration, can now be 
written as a tri-diagonal matrix by expressing the space derivatives in (30) in 
terms of grid valuesin the z co-ordinate by means of three-point central-difference 
formulae. The numerical solution of this problem in conjunction with a numerical 
solution of the set of equations (1 7) is carried out in a similar manner to that 
already described. The necessary boundary conditions me (19)-(21). 

4. Integration procedure 
In  all cases the integration was started in the boundary-layer variables and 

the Erst step is to determine Y!(x, H ) ,  Gn(x, H ) ,  (n = 1,2, ..., no) starting from 
the initial solution given by (22)  and (23 ) .  A very small time step H is necessary 
for this, and in general H must be small throughout the initial stages. The reason 
is that the expansions of F!(x,  T )  and Gn(x, 7) in powers of r depend also upon 
integer powers of k (Collins & Dennis 1973), thus all derivatives with respect to 
r of terms involving odd powers of k are eventually singular a t  i- = 0 after a 
certain stage, provided R is finite. For all finite R the integration was started by 
taking 10 steps H = lo-* followed by 24 steps H = which brings the integra- 
tion to the stage i- = 0.025. For high values of R the solution at i- = 0.025 checked 
extremely accurately with the results calculated from the power series in i- given 
by Collins & Dennis (1973). The series does not converge rapidly enough a t  low 
R for the check to be made. Each solution was then continued using a time step 
H = 0.025. The grid size in the x co-ordinate was taken to be h, = 0.050 in all 
cases. The quantity 1" taken as the maximum value of x in the field, i.e. the value 
of x for which the condition Gn(x, i-) = 0 is assumed, was taken as either I* = 8 
or I* = 10. This is more than adequate initially, as indicated by the initial 
solution (22) .  

As time proceeds the flow separates and the boundary layer thickens and it 
then becomes unrealistic to continue the integration in boundary-layer variables. 
The variables are changed to the actual physical variables at some time T ~ .  

In  order that the same grid points shall be used at the time T~ for both systems 
of co-ordinates, the relation h = 2(27,/R)f h, must hold and i-o is therefore chosen 
so that h, the grid size in the [ co-ordinate, shall be reasonably small. The integra- 
tion is then continued in the physical variables until some final time rM is 
reached a t  which it is terminated. The parameter T~ depends upon various 
circumstances which will be described in the following section. 

Solutions were carried out for R = 5 ,  10, 40, 100, 200, 500, 1000, 5000 and co. 
The values of the various parameters associated with each case are shown in 
table 1. The value gM is the value of the field length [ = I at  the time T = i-M 

at which the calculations were terminated. This is not necessarily the value of 1 
used at earlier times, but it is the greatest value of I used, for it was found that 
as the integration proceeded in the physical variables an increasing amount of 
vorticity was convected further downstream and 1 had to be increased. The 
parameter no in table 1 likewise refers to the number of terms of the series (7) 

8 P L M  60 
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R 

5 
10 
40 

100 
200 
500 

1000 
5000 
co 

TM 70 

15.0 0.30 
20.2 0.60 
30.2 0.80 
25.0 2.00 
13.0 3.55 
4.8 3-20 
2.0 
1.5 
1.25 

- 

- 

- 

h 

0.0346 
0.0346 
0*0200 
0*0200 
0.0188 
0-0113 

6 M  

4.85 
4.85 
4.40 
4.40 
3.39 
2-50 

"0 

20 
20 
50 
80 
60 
60 
20 
20 
40 

TABLE 1. Parameters used in the numerical solutions 

and (8) employed at  the final time rM.  At T = 0 only one term of each of these 
series is required, but as the motion continues more terms are gradually required 
and these are added as they become necessary. The maximum number of terms 
(no = 80) was used in the case R = 100. Relatively few terms were used in the 
cases R > 500, because the solutions were taken to relatively small values of 7M. 
In these cases, also, the solutions were terminated while the scheme of integration 
was still in the boundary-layer co-ordinates. 

5. Calculated results 
The results fall into the three groupings R < 100, R = 100 and R > 100. In  

the first, it was quite easy to integrate the equations t o  near to a steady-state 
solution, although it took a lot of computing time. For R = 100, it was possible 
to integrate until the flow near the cylinder was close to a steady-state solution, 
but the wake was so slow in developing that the integration procedure had to be 
terminated ultimately. For R > I00 it was impossible to integrate to close to 
a steady state because a value of I- was always reached at  which the implicit 
integration procedure broke down. This value of 7 decreased with increasing R. 
The termination of the procedure occurs when it fails to converge to the accuracy 
criterion (29) and, although it may then be possible to obtain convergence for 
a few further time steps by increasing the right side of (29), such a step must 
obviously be suspect. Belcher et al. (1972) reported that an investigation of the 
boundary-layer (R = co) equations by Robins (1970) using the Crank-Nicolson 
procedure also failed to converge for quite small 7. It is possible that convergence 
could be improved using techniques described by Israeli (1970, 1972). The pro- 
cedures used, for example, by Kawaguti & Jain (1966), Son & Hanratty (1969) 
and Thoman & Szewczyk (1969) are explicit, so that the question of failure of 
convergence does not arise. The present results in the three groupings 
mentioned will now be given. 

R < 100 

The solutions at R = 5 and R = I 0  were obtained mainly to check the ability of 
the method to predict steady-state solutions, and at  the same time give some 
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R $8 L Cf CP p(o,7) p(nl 7) 

5 - - 2.01 2.30 - 1-08 1-97 
10 29.6" 0.52 1.29 1.65 - 0.76 1.54 
40 53.6" 4.30 0.54 1-02 - 0.53 1.16 

100 65.4" 7.48 0.30 0.85 - 0.54 1.09 

TABLE 2. Properties of the solutions for R up to 100 at the final time 7 = 

check on the accuracy at low values of R. Previous solutions obtained by solving 
the steady-state equations numerically were given a t  R = 10 by Thom (1928), 
Takami & Keller (1969) and at  R = 5 and 10 by Dennis & Chaw (1970). Kawaguti 
& Jain (1966) have given a solution of the time-dependent equations for R = 10 
and the steady-state solution is given as the limit for large time. A solution at 
R = 40 was also given in all of the investigations cited, except that of Thom 
(1928). I n  addition, this case has been considered by Kawaguti (1953), who 
solved the steady-state equations, and by Son & Hanratty (1969), who tackled 
the time-dependent problem. There is reasonable agreement between all previous 
investigations at R = 10, but some discrepancies exist in the solutions a t  R = 40. 
The present result at  R = 40 was taken to a stage closely representing the steady- 
state solution, although the wake was still expanding slightly when the calcula- 
tions were terminated. 

Estimates of some properties of the solutions a t  the final values of r given in 
table 1 are shown in table 2. The angle 0, is the separation angle, measured from 
the rearmost point of the cylinder. Separation starts to occur only for Reynolds 
numbers greater than about R = 6. The values of 6, in table 2 for R = 10 and 40 
had certainly approached steady-state values when the integrations were 
terminated. They are in good agreement with the steady values (0, = 29.6' a t  
R = lo,@, = 53-23' at R = 40) given by Dennis & Chang (1970) and also with the 
values given by Takami & Keller (1969). The quantity L(7) is the dimensionless 
length of the separated wake measured in radii along the axis 6' = 0 from the 
rearmost point of the cylinder to the end of the re-ciroulating region. The value 
of L given in table 2 at R = I0  is approximately the steady-state value, and is in 
good agreement with the value L = 0.53 given by the steady-state solutions of 
Dennis & Chang (1970). The value L = 4.30 at T~ = 30.2 for the case R = 40 h 
has not quite settled down to a steady-state value. This is indicated in figure 1, 
where L(T) for R = 40 is compared with the experimental points of Honji & 
Taneda (1972). Estimates of L(T) according to the calculations of Kawaguti & 
Jain (1966) and Son & Hanratty (1969) are also included in figure 1. 

Although the length L is obviously still increasing slightly at the termination 
of the present calculations, the general trend as r -+ co seems to be more consistent 
with the steady-state value L = 4-69 given by Dennis & Chang (1970) than with 
the value of about L = 5 given as the limit for large r by both Kawaguti & Jain 
(1966) and Son & Hanratty (1969). It is possible that the longer steady-state 
wake found in both of these latter investigations is due to using a rather coarse 
grid size n/30 in the 6 direction, as already pointed out by Dennis & Chang (1970). 

8-2 
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The experimental results are of little assistance in helping to decide what is the 
correct theoretical limit for L as T -+ co. However a re-calculation of the result 
of Dennis & Chang (1970) at R = 40 using the smaller grid size n/60 in both 
and 8 directions indicates a slight decrease in the steady-state value of L xather 
than an increase. 

The quantities Cf and C, in table 2 are the friction and pressure drag coefficients 
at  the final time rM. These coefficients together make the total drag coefficient 
Cg(r) defined by CD(r) = D/pU2a where D is the total drag at any time. It may 
be shown that 

where the first term in the integral corresponds to the friction drag coefficient 
and the second to the pressure drag coefficient. It follows, using (S), (9) and (16), 
that 

Cf(7) = 2nR-lg1(0,~) = ~(~RT) -*G, (O ,T) ,  

CP(.) = - .Z7rR-1(agl/i?l&=o = - n(47)-1 (aG,/ax),,,. 

(32) 

(33) 

At the time of termination of the integrations, the values of Cf(T) and CJT) were 
still decreasing slightly in all of the cases R = 5,  10 and 40. The values in table 2 
are, however, all within 5 or 6 % of the steady-state values given by Dennis & 
Chang (1970). 
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Finally, the values P(0, 7 M )  and P(T, rM) in table 2 are the values at 7 = rM 
and at B = 0 and 6 = T,  respectively, of the pressure coefficient 

on the surface of the cylinder. Here p ( [ , 0 , 7 )  is the pressure in the fluid and pa 
is the uniform pressure a t  large distances from the cylinder. It may be shown that 

where 

This latter coefficient measures the change in dimensionless pressure over the 
surface of the cylinder starting from the front stagnation point. 

The values of P(0, rM) at 0 = 0 and T for R < 100 in table 2 are all within 5 % 
of the final steady-state values given by Dennis & Chang (1970). At the final 
time r = rM the coefficient P(0, r )  is still changing slowly in the direction of the 
steady-state results over the whole surface of the cylinder for each value of R, 
but the results are quite close to the steady-state results of Dennis & Chaw 
(1970). There can therefore hardly be any doubt that, for the range of R up 
to 40, the method of integration gives solutions which approach a steady state. 
In all cases the integrations could have been continued to larger times. 

R = 100 

This case is one of the most interesting. The growth of the wake length L(r) 
with r is shown in figure 2, where it is compared with the experimental points 
of Honji & Taneda (1972). The agreement is seen to be excellent in this case. 
The results of the calculations performed by Kawaguti & Jain (1966) are also 
shown; the departure of these from the experimental measurements is almost 
certainly due to inaccurate calculation, for Kawaguti & Jain use the same grid 
size n/30 in the 0 direction which they use for R = 40, and this is thought to be 
inadequate even in this latter case. The development of the vorticity on the 
surface of the cylinder with 7 is shown in figure 3. It will be seen that the distribu- 
tion of vorticity over the surface remains smooth up to r = 2, but that at some 
time thereafter the curves develop a kink in the separated region 0 < 6 < 0,. 
This kink continues to be present as r increases, although it never becomes suf- 
ficiently pronounced (as it does for higher values of R) for the vorticity to change 
sign within the separated region, which would imply the exishnce of a secondary 
vortex. Moreover, as r increases further, the kink eventually becomes less pro- 
nounced, until for 7 = 20 it  has more or less completely vanished. After this, 
the curves appear to approach the steady-state solution given by Dennis & 
Chang (1970). A comparison between this solution and the situation reached at 
r = 25 is given in figure 4. The agreement is extremely satisfactory, bearing in 
mind that the region around the maximum vorticity (0 M 135") is always the 
lasti region on the surface to settle down to the steady-state solution, and that 
it had not completely settled down at this time. 
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7 

FIGURE 2. Calculated and experimental values for the wake length L(7) at R = 100. 
Numerical solutions: 0, Kawaguti & Jain (1966); -, this study. Experimental measure- 
ments: x , Honji & Taneda (1972). 

The values of the drag coefficients C,(T) and C,(T) at T = 25 given in table 2 
for R = 100 are a little higher than the steady-state values (Cr(co) = 0.282, 
C,(co) = 0.774) given by Dennis & Chang (1970). This is quite consistent with 
the comparison of figure 4. The wake length L(T) at T = 25 is only just over half 
the steady-state value (13.1) reported by Dennis & Chang (1970), but this is 
again consistent with the fact that the integrations take a long time to settle in 
the wake region. Finally, the solution procedure was terminated a t  7 = 25, 
because the iterative procedure failed to converge to an acceptable criterion of 
accuracy. Although it may be possible to continue the integration using an 
explicit method, the failure of the implicit method was taken as an indication 
that the solution was becoming unstable. It may be noted that, in the case 
R = 100, the time T = 25 is quite consistent with the time at which Honji & 
Taneda (1969) noticed instability in the wake with an eventual transition to  
a turbulent wake. 

R > 100 

The solutions for R > 100 are all characterized by the fact that the integrations 
could be carried out only for a relatively short time before the procedure broke 
down and that the time 7M decreased as R increased. In  figure 5 the growth of 
wake length L(T) is shown in comparison with the results of Honji & Taneda 
(1972) and the calculated rewlts of Son & Hanratty (1969) for the case R = 200. 
The wake length given by Son & Hanratty generally seems to be greater than 
that of the present calculations, a t  the same value of 7. This could be because 
Son & Hctnratty give separation as first occurring at  rs = 0.36, whereas the present 
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0" 

FIGURE 3. Vortieity distribution over the surface of the cylinder for R = 100. 

R I00 200 500 1000 5000 a3 

Series 0.589 0.458 0.396 0.371 0.343 0.322 
Present 0.513 0.445 0.394 0.371 0.343 0.322 

TABLE 3. Comparison of the separation time 7, between the series method of 
Collins & Dennis (1973) and the present results 

investigation gives it considerably later at rs = 0.445. The present result is in 
good agreement with the value rs = 0.458 obtained from the series in powers of r 
given by Collins & Dennis (1973), and a general comparison between the values 
of rs given by the two methods is shown to be somewhat as might be expected 
in table 3. 
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FIGURE 4. Comparison of the vorticity distribution over the surface of the cylinder a t  
R = 100: - , present solution at  7 = 25; 0, steady-state solution of Dennis Lk Chang 
(1970). 

In figure 6, the variation of the angle of separation with T is shown for the 
whole range of R considered. Although the integrations for the higher values 
of R had to be terminated at relatively small values of 7, the trend of the results 
is consistent with the work of Son & Hanratty (1969) and Thoman & Szewczyk 
(1969), particularly in that, for high R, 0, appears to tend to values considerably 
in excess of those predicted by steady boundary-layer theory with external 
potential flow. Also, the tendency of 0, for R = co agrees extremely well with 
the estimates from the series in powers of T obtained by Collins & Dennis (1973) 
up to T = 1, and even at T = 1 the difference between the two estimates is less 
than 0-5 %. Indeed, virtually all the properties of the R = co solution given by 
Collins & Dennis (1973) have been checked to this order of accuracy up to r = 1, 
which gives some theoretical check on the present method. 

One of the reasons for finding a solution at  R = 500 was to attempt to check 
the caIculations of Son & Hanratty (1969). The experiments of Honji & Taneda 
(1969) indicate that at R = 550 a pair of secondary vortices are formed on the 
surface of the cylinder, first making their appearance a t  about r = 4.98. Secondary 
vortices were also observed for flows for which R > 550, but none were observed 
in flows for Reynolds numbers below 550. The calculations of Son & Hanratty 



Plow past an impulsively started circular cylinder 121 

7 

FIGURE 5. Calculated and experimental values for the wake length L(T) at R = 200. 
Numerical solutions: D, Son & Hanratty (1969); -, this study. Experimental measure- 
ments: x , Honji & Taneda (1972). 

7 

FIGURE 6. Variation of the angle of separation 0, with 7.  

(1969) at  R = 500 also indicate the appearance of a pair of secondary vortices. 
They first appear at about T = 2.78, which is much smaller than the corresponding 
value of 7 for the experiments at  R = 550, and eventually decrease in size and 
disappear completely at 7 = 56. The present results confirm these calculations 
for the early stages of the flow in that the secondary vortices first make their 
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(c) 

FIGURE 7 .  Development of the streamlines with time at  R = 500 for 
(a )  7 = 1.5, ( b )  7 = 2.0, (c) 7 = 3.2. 

FIGURE 8. Streamlines at R = 500 for the final time 7n.i = 4.8. 

appearance a t  about r = 2.75, but the calculations could only be continued until 
r = 4.8, at  which stage the procedure broke down. 

The development of the flow patterns with time until shortly after the onset 
of the secondary vortices is shown in figure 7, and the streamline pattern at  the 
final time rM = 4.8 is given in figure 8. The flow pattern in figure 8 compares quite 
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favourably with the photograph at r = 4-98 for R = 550 in Honji & Taneda 
(1969, figure 14, p. 1673). There is also an excellent comparison with the results 
of Son & Hanratty (1969), and this is shown for one property (surface vorticity) 
in figure 9. In  figure 10 the pressure variation around the cylinder surface 
according to the present calculation at R = 500is compared with the experimental 
measurements of Schwabe (1935) for the case R = 560. The pressure coefficient 
P*(8, r )  defhed by (36) is used for this comparison. Schwabe (1935) gives curves 
a t  times corresponding to various values of Old, where D is the distance from the 
centre of the cylinder to the end of the separated region and d is the diameter 
of the cylinder. The same values of Did are used as a basis for comparison of the 
present results. On the whole, the comparison seems satisfactory. 

The solutions for R = 1000 and 5000 do not add greatly to the knowledge of 
the problem, except to confirm certain general tendencies. The development of 
surface vorticity with time is shown for these cases in figures 11 and 12 re- 
spectively. These diagrams indicate that the distortion of vorticity in the 
separated region 0 < 8 < 8, occurs at an earlier value of r as R increases. However, 
the integration procedure failed in each case before a secondary vortex was 
formed. This is hardly surprising, in view of the relatively large amount of 
vorticity produced in the region of reversed flow immediately prior to the failure. 
This is well illustrated in figure 12, where the magnitude of the greatest surface 
vorticity produced in the region 0 < 0 < 8, a t  the h a 1  value rM = 1-5 is almost 
equal to the magnitude of the maximum vorticity in the unseparated region. 
Because of the failure of the present procedure a t  increasingly small values of r 
as R increases, it is felt that some caution should be exercised in evaluating the 
solutions given for large R and r by Thoman & Szewczyk (1969), and even by 
Son & Hanratty (1969), for large r at R = 200 and 500. The experimental results 
of Honji & Taneda (1969, figure 7, p. 1671) indicate that a transition from a 
laminar to a turbulent wake takes place a t  values of r that we estimate? to be 
about r = 24,16, 11 and 8 at the values R = 100,200,500 and 1000, respectively. 
The laminar equations would not be expected to apply for values of r greater 
than these critical values. It could also be conjectured that there is some 
qualitative correlation between these critical values of r ,  and the values of rM 
in table 1 at which the calculations broke down. 

A similar breakdown of the procedure was found to  occur in the case R = co. 
Here the integration could not be continued beyond T = 1-25. Two attempts a t  
integrating the unsteady boundary-layer equations by finite-difference methods 
in this case have been described by Belcher et uZ. (1972). In  the first, the Crank- 
Nicolson procedure was used, and it was found that the method had to be 
abandoned a t  r = 0.45. A more elaborate implicit method succeeded in carrying 
the integration to r = 2, although inaccuracies appeared near the separation 
point at r = 1, and spread in both directions of 8. The situation therefore appears 
to be very similar to that experienced in the present integration. Very similar 
results were also found in this case by Dennis & Staniforth (1971), who applied 

t The estimation is made from the graph cited. The symbol T in the present paper is 2R 
times the corresponding symbol used by Honji & Taneda (1969). 
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FIGURE 13. Distribution of R-+[ over the surface of the cylinder for R = co. 

a two-dimensional finite-difference method of Crank-Nicolson type to the equa- 
tion obtained by expressing the basic equation (3) in terms of boundary-layer 
variables. Solutions using this method were also given by Dennis & Staniforth 
(1971) for R = 100,500, 1000 and lo4 but, on the whole, covering smaller ranges 
of T than those of the present paper. Difficulties with regard to convergence of 
the procedure were encountered at  the higher Reynolds numbers. 

In  figure 13 the quantity R d  5(0,8, 7) is given as a function of the angle 8 
for various values of 7 for the case R = co. This is a measure of Rt times the local 
dimensionless coefficient of skin friction on the surface of the cylinder. The 
agreement with the results obtained from the series in powers of 7 given by 
Collins & Dennis ( 1973) is excellent up to 7 = I. There is also good agreement with 
the results of Belcher et aH. (1972). All investigations appear to agree reasonably 
well with the prediction of Proudman & Johnson (1962) that the slope of the 
local skin friction curve a t  0 = 0 should tend to the same value as the slope at 
8 = T as 7 becomes large. Various other properties of the R = co solution were 
calculated, and are found to be in good agreement for values of 7 up to 7 = 1 
with the results of Collins & Dennis (1973). No secondary vortex was found to 
occur up to the time 7111 = 1.25 a t  which the calculations terminated. 

A detailed account of the numerical method used for solving the set of dif- 
ferential equations (10) is given in Dennis & Chang (1969). Copies of this report 
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can be obtained from the Mathematics Research Center, University of Wisconsin, 
Madison, Wisconsin. A copy has also been deposited in the editorial office of the 
Journal of Fluid Mechanics. 
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puters of the University of Western Ontario, and on the CDC 6600 computer of 
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REFERENCES 

BELCHER, R. J., BURCGRAF, 0. R., COOKE, J. C., ROBINS, A. J. & STEWARTSON, K. 1972 
Recent Research on Unsteady Boundary Layers, vol. 2 (ed. E. A. Eichelbrenner). 
Quebec : Laval University Press. 

BLASIUS, H. 1908 2. Math. Phys. 56, 1. 
COLLINS, W. M. & DENNIS, S. C. R. 1973 Quart. J .  Mech. Appl. Math. 26, 53. 
DENNIS, S .  C. R. & CRANO, G. Z .  1969 Math. Res. Center, University of Wisconsin, Tech. 

DENNIS, S. C. R. & CHANC, G. z. 1970 J .  Fluid Mech. 42, 471. 
DENNIS, S. C. R. & STANIFORTH, A. N. 1971 Lecture Notes in Physics 8, 343. 
GOLDSTEIN, S. & ROSENHEAD, L. 1936 Proc. Camb. Phil. SOC. 32, 392. 
HIROTA, I. & MIYAKODA, K. 1965 J .  Met. Soc. Japan, Ser. 11, 43, 30. 
HONJI, H. & TANEDA, S. 1969 J .  Phys. SOC. Japan, 27, 1668. 
HONJI, H. & TANEDA, S. 1972 Rep. Res. Inst. Appl. Mech. Kyushu University, 19, 265. 
INCHAM, D. B. 1968 J .  Fluid Mech. 31, 815. 
ISRAELI, M. 1970 Studies in Appl. Math. 49, 327. 
ISRAELI, M. 1972 Studies in Appl. Math. 51, 67. 
JAIN, P. C. & RAO, K. S. 1969 Phys. Fluids Suppl. 11, 12,II-57. 
KAWAGUTI, M. 1953 J .  Phys. SOC. Japan, 8, 747. 
KAWACUTI, M. & JAIN, I?. C. 1966 J .  Phys. Soc. Japan, 21, 2055. 
ORSZAG, S. A. 1970 J .  Atmos. Sci. 27, 890. 
ORSZAG, S. A. 1971 Studies in Appl. Math. 50, 293. 
PAYNE, R. B. 1958 J .  Fluid Mech. 4, 81. 
PROUDMAN, I. & JOHNSON, K. 1962 J .  Fluid Mech. 12, 161. 
ROBINS, A. J. 1970 Ph.D. thesis, University of Bristol. 
ROSSER, J. B. 1967 Math. Res. Center, University of Wisconsin, Tech. Summary Rep. 797. 
SCHUH, H. 1953 2. Flugwis. 1, 122. 
SCHWABE, M. 1935 Ing.-Arch. 6, 34. 
SON, J. S. & HANRATTY, T. J. 1969 J .  Fluid Mech. 35, 369. 
TAKA,MI, H. & KELLER, H. B. 1969 Phys. Pluids Suppl. 11, 12,II-51. 
TANEDA, S. 1972 Recent Research on Unsteady Boundary Layers, vol. 2 (ed. E. A. Eichel- 

THOM, A. 1928 Aero. Res. Counc. R. & M .  no. 1194. 
THOMAN, D. C. & SZEWCZYK, A. A. 1969 Phys. Fluids Suppl. 11, 12,II-76. 
WANG, C. Y. 1967 J .  Math. Phys. 46, 195. 
WATSON, E. J. 1955 Proc. Roy. SOC. A231, 104. 
WUNDT, H. 1955 Ing.-Arch. 23, 212. 

Summary Rep. 859. 

brenner) . Quebec : Laval University Press. 




